2,096 research outputs found

    Phase diagram of the three-dimensional Hubbard model at half filling

    Full text link
    We investigate the phase diagram of the three-dimensional Hubbard model at half filling using quantum Monte Carlo (QMC) simulations. The antiferromagnetic Neel temperature T_N is determined from the specific heat maximum in combination with finite-size scaling of the magnetic structure factor. Our results interpolate smoothly between the asymptotic solutions for weak and strong coupling, respectively, in contrast to previous QMC simulations. The location of the metal-insulator transition in the paramagnetic phase above T_N is determined using the electronic compressibility as criterion.Comment: 6 pages, 6 figures, to be published in Eur. Phys. J. B (2000

    A Phylogenetic Analysis of the Genus Fragaria (Strawberry) Using Intron-Containing Sequence from the ADH-1 Gene

    Get PDF
    The genus Fragaria encompasses species at ploidy levels ranging from diploid to decaploid. The cultivated strawberry, Fragaria×ananassa, and its two immediate progenitors, F. chiloensis and F. virginiana, are octoploids. To elucidate the ancestries of these octoploid species, we performed a phylogenetic analysis using intron-containing sequences of the nuclear ADH-1 gene from 39 germplasm accessions representing nineteen Fragaria species and one outgroup species, Dasiphora fruticosa. All trees from Maximum Parsimony and Maximum Likelihood analyses showed two major clades, Clade A and Clade B. Each of the sampled octoploids contributed alleles to both major clades. All octoploid-derived alleles in Clade A clustered with alleles of diploid F. vesca, with the exception of one octoploid allele that clustered with the alleles of diploid F. mandshurica. All octoploid-derived alleles in clade B clustered with the alleles of only one diploid species, F. iinumae. When gaps encoded as binary characters were included in the Maximum Parsimony analysis, tree resolution was improved with the addition of six nodes, and the bootstrap support was generally higher, rising above the 50% threshold for an additional nine branches. These results, coupled with the congruence of the sequence data and the coded gap data, validate and encourage the employment of sequence sets containing gaps for phylogenetic analysis. Our phylogenetic conclusions, based upon sequence data from the ADH-1 gene located on F. vesca linkage group II, complement and generally agree with those obtained from analyses of protein-encoding genes GBSSI-2 and DHAR located on F. vesca linkage groups V and VII, respectively, but differ from a previous study that utilized rDNA sequences and did not detect the ancestral role of F. iinumae

    Double beta decay versus cosmology: Majorana CP phases and nuclear matrix elements

    Full text link
    We discuss the relation between the absolute neutrino mass scale, the effective mass measured in neutrinoless double beta decay, and the Majorana CP phases. Emphasis is placed on estimating the upper bound on the nuclear matrix element entering calculations of the double beta decay half life. Consequently, one of the Majorana CP phases can be constrained when combining the claimed evidence for neutrinoless double beta decay with the neutrino mass bound from cosmology.Comment: 11 pages, 3 figure

    Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature

    Get PDF
    Plants emit significant amounts of monoterpenes into the earth's atmosphere, where they react rapidly to form a multitude of gas phase species and particles. Many monoterpenes exist in mirror-image forms or enantiomers. In this study the enantiomeric monoterpene profile for several representative plants (<i>Quercus ilex L., Rosmarinus officinalis L.</i>, and <i>Pinus halepensis Mill.</i>) was investigated as a function of chemotype, light and temperature both in the laboratory and in the field. Analysis of enantiomeric monoterpenes from 19 <i>Quercus ilex</i> individuals from Southern France and Spain revealed four regiospecific chemotypes (genetically fixed emission patterns). In agreement with previous work, only <i>Quercus ilex</i> emissions increased strongly with light. However, for all three plant species no consistent enantiomeric variation was observed as a function of light, and the enantiomeric ratio of &alpha;-pinene was found to vary by less than 20% from 100 and 1000 μmol m<sup>−2</sup> s<sup>−1</sup> PAR (photosynthetically active radiation). The rate of monoterpene emission increased with temperature from all three plant species, but little variation in the enantiomeric distribution of α-pinene was observed with temperature. There was more enantiomeric variability between individuals of the same species than could be induced by either light or temperature. Field measurements of α-pinene enantiomer mixing ratios in the air, taken at a <i>Quercus ilex</i> forest in Southern France, and several other previously reported field enantiomeric ratio diel cycle profiles are compared. All show smoothly varying diel cycles (some positive and some negative) even over changing wind directions. This is surprising in comparison with variations of enantiomeric emission patterns shown by individuals of the same species

    Conditions for detecting CP violation via neutrinoless double beta decay

    Full text link
    Neutrinoless double beta decay data together with information on the absolute neutrino masses obtained from the future KATRIN experiment and/or astrophysical measurements give a chance to find CP violation in the lepton sector with Majorana neutrinos. We derive and discuss necessary conditions which make discovery of such CP violation possible for the future neutrino oscillation and mass measurements data.Comment: 15 pages, 4 figures, RevTe

    Intensitätseffekte bei der Photoassoziation von ultrakalten Cs<sub>2</sub>-Moekülen in einer optischen Dipolfalle

    No full text

    Saturation of Cs2 Photoassociation in an Optical Dipole Trap

    Full text link
    We present studies of strong coupling in single-photon photoassociation of cesium dimers using an optical dipole trap. A thermodynamic model of the trap depletion dynamics is employed to extract absolute rate coefficents. From the dependence of the rate coefficient on the photoassociation laser intensity, we observe saturation of the photoassociation scattering probability at the unitarity limit in quantitative agreement with the theoretical model by Bohn and Julienne [Phys. Rev. A, 60, 414 (1999)]. Also the corresponding power broadening of the resonance width is measured. We could not observe an intensity dependent light shift in contrast to findings for lithium and rubidium, which is attributed to the absence of a p or d-wave shape resonance in cesium
    • …
    corecore